Janki Devi Bajaj Government Girls College Kota

FACULTY PROFILE

Photo

- 1 Name: Dr. Sarita Khandelwal
- 2 Designation: Assistant professor
- **3 Department: Chemistry**

4 Educational Qualification:

Level	Name of University/Board	Year	Title/ Remark/ Medal
<i>P.G.</i>	Rajasthan University	2009	
M.Phil.			
Ph.D.	Rajasthan University	2014	
Other	Net JRF CSIR Gate UGC Women Scientist Post doc fellowship	2009 2009 2015	

1. Experience: Teaching / Research

|--|

Membership (Academic Bodies):

1.

- 2.
- 3.

3. M.O.O.C (Developed by Faculty):

- 4. Awards Received:
- 5. Academic Courses Attended:

Course	Place	Sponsoring Agency	Duration
--------	-------	----------------------	----------

Orientation Course Induction course	Jaipur	UGC HRDC- Rusa Rajasthan University	15 July 2019 to 10 August 2019

RefresherAjmer		

Other (Workshop/ Summer School/ Camp etc.)	Kota	Govt. College Kota	14-15 Feb 2020
Faculty development program			

Online FD.P	Gyan Ganga Program	R.R. College	25 January -31 Jaunary
(Faculty		Alwar	
Development			
Programme)attended			

6. Seminar/ Conference attended:

Name of Seminar/ Conference Region	al/ Paper Presented	Title of Paper	Date
---------------------------------------	---------------------------	----------------	------

	_	
	-	

7. Organizing Sec./Convener of conference/seminar/webinar :

8. Resource Person:

12. Research Publications

S.No.	Title of the paper	Title of the journal	Year of publication	Citation Index	H Index	Impact Factor
1	Multicomponent synthesis of dispiroheterocycles using a magnetically separable and reusable heterogeneous catalyst	RSC Advances	2020	128	1	3.070
2	Synthesis and characterization of terbium doped TiO2 nanoparticles and their use as recyclable and reusable heterogeneous catalyst for	Applied Organometallic Chemistry	2020	66		3.581

	efficient and environmentally					
	sustainable synthesis of					
	spiroannulated indolo[3.2-					
	alguinglings mimetic scaffolds					
	of is segments legins					
-			2020	25		1.011
3	Efficient and Sustainable	Chemistryselect	2020	25		1.811
	Synthesis of Spiroannulated					
	Hybrid Molecules with					
	Privileged Substructures using					
	Nanostructured Heterogeneous					
	Catalyst					
4	Efficient and environmentally	Molecular	2020	56	1	2.229
•	sustainable domino protocol for	Diversity	2020	50	1	2.22>
	the synthesis of diversified	Diversity				
	aning hotomogualog with					
	spironeterocycles with					
	privileged heterocyclic					
	substructures using bio-organic					
	catalyst in aqueous medium					
5	Deep eutectic solvent promoted	New Journal of	2019	112	7	3.288
	synthesis of structurally diverse	Chemistry				
	hybrid molecules with					
	privileged heterocyclic					
	substructures					
6	An efficient and	RSC advances	2018	128	8	3.070
U	environmentally sustainable		-010		Ũ	0.070
	domino protocol for the					
	supplies of structurelly diverse					
	synthesis of structurally diverse					
	spiroannulated					
	pyrimidophenazines using					
	erbium doped TiO 2					
	nanoparticles					
7	Use of Nanomagnetic Sulfated	ChemistrySelect	2017	25	10	1.811
	Zirconia (Fe3O4@	-				
	ZrO2/SO42-) as Sustainable					
	Heterogeneous Acid Catalyst					
	for Synthesis of					
	Spiroheterocycles under					
	Solvent-Free Conditions					
0	Diversity Oriented Synthesis of	ChamiatarSalaat	2017	25	11	1 011
0	Diversity-Oriented Synthesis of	ChemistrySelect	2017	23	11	1.011
	Spirooxindoles Using Surface-					
	Modified TiO2 Nanoparticles as					
	Heterogeneous Acid Catalyst					
9	Efficient and Green Synthetic	Current	2017	8	1	1.028
	Protocol for the Synthesis of	Organocatalysis				
	Structurally Diverse	_				
	Spiroheterocycles using GAAS					
	as Catalytic Solvent					
10	An Efficient and	Current	2016		1	
10	Environmentally Benign	catalysis			1	
	Diversity_Oriented	catarysis				
	Multicomponent Synthesis of					
	Drivilaged Substanting Decel					
	Privileged Substructures Based					
	Spirooxindoles Using TiO2					
	Nanoparticles as Heterogeneous					
	Catalyst					
11	1-Proline catalyzed	Current	2016	8	9	1.028
	multicomponent reactions	Organocatalysis				
12	Deep eutectic solvents (DESs)	Journal of	2016	96	188	5.065
	as eco-friendly and sustainable	Molecular				
	solvent/catalyst systems in	Liquids				
1						
	organic transformations	1				
13	organic transformations Natural Product-Mimetic	Journal of	2016	57	5	1.484

	Scaffolds with Privileged	Heterocyclic				
	Heterocyclic Systems: Design.	Chemistry				
	Synthesis, and Evaluation of	5				
	Antioxidant Activity of					
	Quinazoquinobenzothiazinones					
14	An Efficient and	Current	2015		2	
1.	Environmentally Benign One-	catalysis	2015		2	
	not Three-Component Domino	catalysis				
	Protocol for the Synthesis of					
	Structurally Diverse					
	Spiroquinazolines					
15	Environmentally benign	Current Organia	2015	4.4	5	2 157
15	curthetic protocol for the	Supplied Organic	2013	44	5	2.137
	synthetic protocol for the	Synthesis				
	synthesis of					
	spiroquinazonnones using					
	sustainable and recyclable					
	chonne chioride based deep					
16			2015	-	2	
16	Efficient and Environmentally	Current Green	2015		2	
	Benign Diversity Oriented	Chemistry				
	Synthesis of 2, 3-			1		
	dihydroquinazolin-4 (1H)-ones					
	Using GAAS As a Bio-based					
	Green Solvent					
17	Synthesis and evaluation of	Research on	2015	43	5	2.262
	antioxidant and radical	Chemical				
	scavenging activities of	Intermediates				
	quinolinobenzothiazinones					
18	Diversity Oriented p-TSA	Current	2015	8	3	1.028
	Catalyzed Efficient and	Organocatalysis				
	Environmentally Benign					
	Synthetic Protocol for the					
	Synthesis of Structurally					
	Diverse Heteroannulated					
	Benzothiazolopyrimidines					
19	An efficient one pot three-	RSC Advances	2015	128	26	3.070
	component nanocatalyzed					
	synthesis of spiroheterocycles					
	using TiO ₂ nanoparticles as a					
	heterogeneous catalyst					
20	A simple, efficient and	Combinatorial	2014	59	13	1.205
	environmentally benign	chemistry &				
	synthetic protocol for the	high throughput				
	synthesis of spirooxindoles	screening				
	using choline chloride-oxalic					
	acid eutectic mixture as					
	catalyst/solvent system					
21	A Tandem and Domino	Current Organic	2014	100	5	2.142
	Protocol for Synthesis of	Chemistry				
	Chromeno-, Pyrano-and					
	Quinolinofused Spiro [pyrazolo					
	[3, 4-b] pyridine-indolines]					
22	L-Proline catalyzed synthesis of	Current	2014	8	6	1.080
	structurally diverse 1, 4-	Organocatalysis		1		
	dihydropyridines fused with			1		
	medicinally privileged					
	heterocyclic systems					
23	Efficient and environmentally	Green	2014	27	6	0.510
	benign synthetic protocol for	Chemistry		1		
	the synthesis of structurally	Letters and		1		
	diverse annulated	Reviews		1		
	pyridopyrimidines			1		

24	Deep eutectic solvent promoted	RSC Advances	2014	128	43	3.070
	efficient and environmentally					
	benign four-component domino					
	protocol for synthesis of					
	spirooxindoles					

8. Research Projects:

Title of the Project	Year	Name of funding agency	Fund available/ utilized	Present status

9. Research Supervision:

- Basic Field of specialization:
- Ph.D.

Name of Student	Title of thesis	Present status	Date and Year of Award, if so

✤ M. Phil.

- 10. Monograph/ Book / Chapter (in Edited Book)/Chapters in study material of Open universities
 - Book (Single Author)

Title of Book	ISBN/ ISSN No.	Publisher with Place	Year of Publication

• Chapter(s) in Book (Edited / multi-author)

Title of Chapter	Authors / Editors	Name of the Book with ISBN/ ISSN No.	Publisher with Place	Year of Publication
Use of sustainable organic transformations in the construction of heterocyclic scaffolds	Sarita Khandelw al, Yogesh Kumar Tailor, Esha Rushell, Mahnedra Kumar	Green Approaches in Medicinal Chemistry for Sustainable Drug Design	Elsevier ISBN: 9780128175934, 0128175931	2020

13 Sports Activities:

14 Extra Curricular Activities:

15. Any Other Relevant Information/Contributions

1.