Janki Devi Bajai Government Girls College, Kota

Sample Paper
M.Sc. (Mathematics) Semester -I

Paper-I (Linear Algebra)
Time : 1 Hour
Total Marks : 15 Marks

1. Define
[5 Marks]
(i) Dual space
(ii) Adjoint of a linear transformation
(iii) Annihilator
(iv) Invariance
(v) Projection
2. A linear transformation E on $V(F)$ is a projection on some subspace iff it is idempotent i.e. $E^{2}=E$

> OR

State and prove Sylvester's law of Nullity.
[5 Marks]
3. Let E be a linear transformation,

$$
E \text { is a projection } \Leftrightarrow(T-E) \text { is a projection. }
$$

OR
Let $V(F)$ and $V^{\prime}(F)$ be two $F D V S$, and t be a linear transformation from V into V^{\prime}. Then

$$
\operatorname{rank}(t)=\operatorname{rank}\left(t^{*}\right)
$$

where t^{*} is the adjoint of t.

Janki Devi Bajaj Government Girls College, Kota

> Sample Paper
M.Sc. (Mathematics) Semester -I

Paper-II (Complex Analysis)

Attempt any three question

1.Using the definition of the integral of $f(z)$ on a given path, evaluate:

$$
\int_{0}^{1+i} z^{2} d z
$$

2.Find the value of:

$$
\int_{|z|=1} \frac{\sin ^{6} z}{\left[z-\frac{\pi}{6}\right]^{3}} d z
$$

3.Find out the zeros and discuss the nature of singularities of:

$$
\mathrm{F}(\mathrm{z})=\frac{z-2}{z^{2}} \sin \frac{1}{z-1}
$$

4. Show that function $u=\cos x$ coshy is harmonic and find its harmonic conjugate.
5. Find a bilinear transformation that maps the points $\mathrm{z}=\infty, i, 0$ into the points $\mathrm{w}=0, i, \infty$.

Janki Devi Bajaj Government Girls College, Kota

Sample Paper
M.Sc. (Mathematics) Semester -I

Paper-III (Mechanics)

Time: 1 Hour
4. Define

Total Marks : 15
[5 Marks]
(i) Rigid Body
(ii) Moment of Inertia
(iii) M.I. about a diameter of the ring
(iv) Principal Axes
(v) M.I. about an axis through its middle point and perpendicular to the road.
5. Find the product of inertia of a semicircular wire about its diameter and tangent at its extremity.

OR

Prove the Theorem of parallel axes.
6. State and Prove D'Alembert's Principle.
[5 Marks]
OR

To deduce the general equation of motion of a rigid body from D'Alembert's Principle.

Janki Devi Bajai Government Girls College, Kota

Sample Paper
M.Sc. (Mathematics) Semester -I

Paper-IV (Integral Transform)

Time: 1 Hour

1. Define
(i) Second translation theorem
(ii) Initial value theorem
(iii) Laplace of periodic functions
(iv) Heaviside's expansion formula
(v) Convolution

Total Marks : 15
[5 Marks]
(v)
2. Find

$$
L^{-1}\left\{\frac{1}{\left(p^{2}+1\right)^{2}}\right\}
$$

OR
Prove the Convolution theorem.
[5 Marks]
3. Evaluate

$$
\begin{gathered}
\int_{0}^{\infty} t e^{-2 t} \cos t d t \\
\mathrm{OR}
\end{gathered}
$$

Evaluate $\quad L\left\{2^{t}\right\}$
[5 Marks]

Janki Devi Bajaj Government Girls College, Kota

Sample Paper

M.Sc. (Mathematics) Semester -I

> Paper-V (Numerical analysis)

Attempt any three questions

Total Marks: 15

1. Solve the system of equations.

$$
\begin{array}{r}
4 x_{1}-x_{2}=1 \\
-x_{1}+4 x_{2}-x_{3}=0 \\
-x_{2}+4 x_{3}=0
\end{array}
$$

Using Cholesky method.
2. Solve the system of equation:

$$
\begin{aligned}
& 28 x+4 y-z=32 \\
& x+3 y+10 z=24 \\
& 2 x+17 y+4 z=35
\end{aligned}
$$

Using Gauss-Seidal method.
3. Find all the roots of the polynomial equation $x^{3}-3 x^{2}-6 x+8=0$ using the Graeffe's root squaring method.
4. Find the root of the equation $x^{3}-2 x-5=0$ by Birge-Vieta method correct upto four places of decimal. Also obtain deflated polynomial.
5. Solve the system of equations.

$$
\begin{array}{r}
2 x_{1}-13 x_{2}-3 x_{3}=49 \\
5 x_{1}-6 x_{2}+17 x_{3}=25 \\
11 x_{1}-2 x_{2}-4 x_{3}=-31
\end{array}
$$

Using Relaxation method.

