Janki Devi Bajaj Government Girls College, Kota

Sample Paper
M.Sc. (Mathematics) Semester -II
Paper-Math 2 C(i) (Abstract Algebra)

Max Marks-15

There are seven questions; students are instructed to attempt five questions. Each question shall be of three marks.

1. Prove that if G is a group of order p^{2}, where p is a prime, then G is abelian.
2. Define $\phi: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{12}$ by $\phi(x)=3 x$, then prove that ϕ is a homomorphism.
3. Let G be a group of order 35 , then prove that G is cyclic.
4. Let G be a group and let $Z(G)$ be the centre of G. If $G / Z(G)$ is cyclic, then G is abelian.
5. If G is a group of order $p q$, where p and q are primes, $p<q$, and p does not divide $q-1$, then G is cyclic. In particular, G is isomorphic to $\mathbb{Z}_{p q}$.
6. Prove that the only group of order 255 is \mathbb{Z}_{255}.
7. Prove that the second syllow theorem and give an example.

Janki Devi Bajaj Government Girls College, Kota

Sample Paper
M.Sc. (Mathematics) Semester -II
Paper-Math 2 C(ii) (Real Analysis)

Max Marks-15

There are five questions; students are instructed to attempt three questions. Each question shall be of five marks.
1.Show that every interval is measurable set.
2.Prove that the family M of all measurable sets is an algebra of sets in $P(R)$.
3.Let f be measurable function defined on a measurable set E and g and f are equivalent functions. prove that g is measurable function.
4. Show that the sequence $\left\{f_{n}(x)\right\}$, where $f_{n}\left(x=x^{n-1}(1-x)\right.$ converges uniformly on $[0,1]$.
5.Prove that if a sequence $\left\{f_{n}(x)\right\}$ of continuous function is uniformly convergent to a function $f(x)$ on $[a, b]$, then $f(x)$ is continuous on $[a, b]$.

Janki Devi Bajaj Government Girls College, Kota

Sample Paper
M.Sc. (Mathematics) Semester -II
Paper-Math 2 C(iii) (Partial Differential Equation)

Max Marks-15
There are seven questions; students are instructed to attempt five questions. Each question shall be of three marks.

1. Obtain four Picard approximations if $y^{\prime}=1+y^{2}$ and $y(0)=0$. Find an interval for which the sequence of Picard approximations will converge to the actual solution.
2. Find the envelopes of the family of the curves $y=\cos (x+c)$.
3. Find the envelopes of the family of the curves $(x-c)^{2}=3 y^{2}-y^{3}$.
4. Find 1-parameter family of solutions of the Clairaut equation $y=y^{\prime} x+$ $\left(y^{\prime}\right)^{2}$. Also investigate for the envelopes of the family of solutions.
5. Every tangent to a curve has the property that the sum of its intercepts has a constant value k. Find the curve.
6. Find the complete integral of the PDE: $p^{2} z^{2}+q^{2}=1$.
7. Examine the existence and uniqueness of solution of the following IVP:

$$
\frac{d y}{d x}=y^{2}, \quad y(-1)=1
$$

Janki Devi Bajaj Government Girls College, Kota

Sample Paper
M.Sc. (Mathematics) Semester -II
Paper-Math 2 C(iv) (Special Function)

Max Marks-15

There are five questions; students are instructed to attempt three questions. Each question shall be of five marks.
1.State and prove Dixon's theorem.
2.Derive expressions for integral representation of $p^{F q}$.
3.State and prove orthogonal property for Bessel's function.
4.State and prove Whipple's theorem for generalised hypergeometric function.
5.Describe complete solution of confluent hypergeometric differential equation.

Janki Devi Bajaj Government Girls College, Kota

Sample Paper
M.Sc. (Mathematics) Semester -II
Paper-Math $2 \mathrm{C}(\mathrm{v})$ (Discrete Mathematics)

Max Marks-15

There are seven questions; students are instructed to attempt five questions. Each question shall be of three marks.

1. Test the validity of the following argument:
2. If I like mathematics, then I will study.
3. Either I study or I fail.
4. Therefore, If I fail then I do not like mathematics.
5. Obtain DNF of the statement $\sim(p \vee q) \leftrightarrow p \wedge q$.
6. Prove the implication "If n is an integer not divisible by 3 , then $n^{2} \equiv$ $1(\bmod 3) "$.
7. Prove by contradiction that in a room of 13 people, 2 or more people have their birthdays in the same month.
8. During a month with 30 days a baseball team plays at least 1 game a day, but not more than 45 games. Show that there must be a period of some number of consecutive days during which the team must play exactly 14 games.
9. Prove addition principle for three sets.
10. Show that 1601 is a prime number.
