Janki Devi Bajaj Government Girls College, Kota

Sample Paper
M.Sc. (Mathematics) Semester -IV
Paper-Math 4 C(iv) (Functional Analysis-II)

Max Marks-15

There are five questions; students are instructed to attempt three questions. Each question shall be of five marks.

1. State and prove open mapping theorem.
2. Prove that every inner product space is a normed linear space .
3. Let N and N^{\prime} be normed linear space with the same scalars and let
$\mathrm{T}: \mathrm{N} \rightarrow \mathrm{N}$ ' be linear transformation. Then prove that T is bounded $\Leftrightarrow \mathrm{T}$ is continuous.
4. Let S be non-empty subset of a Hilbert space H , then show that S^{\perp} is a closed linear subspace of H .
5. Let H be a Hilbert Space ,then show that conjugate space H^{*} is also a Hilbert space with respect to the inner product defined by $\left(f_{x}, f_{y}\right)=$ (y, x).

Janki Devi Bajaj Government Girls College, Kota

Sample Paper
M.Sc. (Mathematics) Semester -IV
Paper-Math 4 C(vii) (Topology-II)

Max Marks-15
There are five questions; students are instructed to attempt three questions. Each question shall be of five marks.

1. Prove that the product spaces $X^{*} Y$ is connected if and only if X and Y are connected .
2. Prove that a subset F, of R is connected if and only if it is an interval .Is R connected? Justify the answer.
3. Prove that a topological space (X, T) is compact if and only if each net in X has a cluster point.
4. prove that A net in a set X is ultranet if and only if the filter it generates is an ultrafilter.
5. If (X, T) be a topological space and let $Y \subset X$ then prove that Y is T-closed if and only if no net in Y converges to a point in $\mathrm{X}-\mathrm{Y}$.

Janki Devi Bajaj Government Girls College, Kota

Sample Paper
M.Sc. (Mathematics) Semester -IV

Paper-Math 4 O(i) (Operation Research-II)

Max Marks-15
There are five questions; students are instructed to attempt three questions. Each question shall be of five marks.

1. Find maximum value of y_{1}, y_{2}, y_{3}

$$
\begin{gathered}
\text { Subject to } y_{1}+y_{2}+y_{3}=15 \\
\text { and } y_{1}, y_{2}, y_{3} \geq 0
\end{gathered}
$$

2. Use Dynamic programming to solve the following L.P.P

$$
\begin{aligned}
& \operatorname{Max} z=2 x_{1}+5 x_{2} \\
& \text { s.t. } \quad 2 x_{1}+x_{2} \leq 43 \\
& \quad 2 x_{2} \leq 46 \\
& \text { and } \quad x_{1}, x_{2} \geq 0
\end{aligned}
$$

3. Find the maximum or minimum value of the function:

$$
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-4 x_{1}-8 x_{2}-12 x_{3}+56
$$

4. Use the K-T conditions to solve the following NLPP:

$$
\begin{gathered}
\operatorname{Min} z=-8 x_{1}-10 x_{2}+x_{1}{ }^{2}+x_{2}{ }^{2} \\
\text { s.t. } \quad 3 x_{1}+2 x_{2} \leq 6 \\
\quad \text { and } \quad x_{1}, x_{2} \geq 0
\end{gathered}
$$

5. Use Beale's method to solve the following QPP:

$$
\begin{gathered}
\operatorname{Min} z=10 x_{1}{ }^{2}+x_{2}{ }^{2}+4 x_{1} x_{2}-10 x_{1}-25 x_{2} \\
\text { s.t. } \quad x_{1}+2 x_{2} \leq 10 \\
x_{1}+x_{2} \leq 9 \\
\text { and } \quad x_{1}, x_{2} \geq 0
\end{gathered}
$$

Janki Devi Bajaj Government Girls College, Kota

Sample Paper
M.Sc. (Mathematics) Semester -IV
Paper-Math 4 O(iv) (Fluid Dynamics)

Max Marks-15

There are five questions; students are instructed to attempt three questions. Each question shall be of five marks.

1. To show that a sphere projected in a liquid under gravity describes a parabola of latus-rectum $\frac{2 \sigma+\rho}{\sigma-\rho} \times \frac{W^{2}}{g}$, where σ and ρ are the densities of the sphere and the liquid and W is the horizontal velocity.
2. Write a short note on Image of a doublet in front of a sphere.
3. Discuss the motion for which Stoke's stream function is given by

$$
\Psi=\left(\frac{V}{2}\right) \times\left(a^{4} r^{-2} \cos \theta-r^{2}\right) \sin ^{2} \theta,
$$

where r is the distance from a fixed point and θ is the angle this distance make with the fixed direction.
4. Define Vortex dipole.
5. An infinite row of equidistant rectilinear vortices is at a distance an apart. The vortices are of the same numerical strength k but they are alternately of opposite signs. Find the complex function that determines the velocity potential and the stream function.

Janki Devi Bajaj Government Girls College, Kota

Sample Paper
M.Sc. (Mathematics) Semester -I
Paper-Math 4 O(iii) (Mathematical Statistics)

Max Marks-15

There are seven questions; students are instructed to attempt five questions. Each question shall be of three marks.

1. A sample of 900 members has a mean 3.4 cms . and $s . d .2 .61 \mathrm{cms}$. Is the sample from a large population of mean 3.25 cms . and $s . d .2 .61 \mathrm{cms}$. ? Is the population is normal and its mean is unknown, find the 95\% and 98\% fiducial limit for true mean.
2. Write a short note on method of minimum Chi-square.
3. The life expectancy of people in the year 1970 in India is expected to be 50 years. A survey was conducted in eleven regions of India and the data obtained are given below. Do the data confirm the expected view ?

Life expectancy (years):	54.2	50.4	44.2	49.7	55.4	57.0
	58.2	56.6	61.9	57.5	53.4	

4. Write a short note on distribution of order statistics.
5. Let $x_{1}, x_{2}, \ldots, x_{n}$ denote random sample of size n from a uniform population with p.d.f :

$$
f(x, \theta)=1 ; \theta-\frac{1}{2} \leq x \leq \theta+\frac{1}{2},-\infty<\theta<\infty \quad \text { obtain }
$$

M.L.E. for θ.
6. A machine produced 20 defective articles in a batch of 400 . After overhauling it produced 10 defectives in a batch of 300 . Has the machine improved?
7. Write a short note on estimation.

